Residual-Based A Posteriori Error Estimates for $hp$-Discontinuous Galerkin Discretizations of the Biharmonic Problem

نویسندگان

چکیده

Residual-Based A Posteriori Error Estimates for $hp$-Discontinuous Galerkin Discretizations of the Biharmonic Problem

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigrid Algorithms for hp-Discontinuous Galerkin Discretizations of Elliptic Problems

We present W-cycle multigrid algorithms for the solution of the linear system of equations arising from a wide class of hp-version discontinuous Galerkin discretizations of elliptic problems. Starting from a classical framework in multigrid analysis, we define a smoothing and an approximation property, which are used to prove the uniform convergence of the W-cycle scheme with respect to the gra...

متن کامل

Robust a Posteriori Error Estimates for Finite Element Discretizations of the Heat Equation with Discontinuous Coefficients

In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable θ-scheme with 1/2 ≤ θ ≤ 1. Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, C...

متن کامل

Energy Norm a Posteriori Error Estimation of Hp - Adaptive Discontinuous Galerkin Methods for Elliptic Problems

In this paper, we develop the a posteriori error estimation of hp-version interior penalty discontinuous Galerkin discretizations of elliptic boundary-value problems. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The bounds are explicit in the local mesh sizes and approximation orders. A series of numerical experiments il...

متن کامل

A Posteriori Error Estimates for Discontinuous Galerkin Methods Based on Weighted Interior Penalties

Most of the discontinuous Galerkin (DG) methods are usually defined by means of the so called numerical fluxes between neighboring mesh cells, see [1]. Nevertheless, for the interior penalty (IP) schemes for second order problems it is possible to correlate the expression of the numerical fluxes with a corresponding set of local interface conditions that are weakly enforced on each inter-elemen...

متن کامل

A posteriori estimates for the Bubble Stabilized Discontinuous Galerkin Method

with f ∈ L2(Ω), a reaction coefficient τ > 0 and a diffusion coefficient that is piecewise constant on each element and satisfies ε(x) > ε0 > 0. We assume that there exists a constant ρ > 0 such that ε|κ1 6 ρε|κ2 for two elements satisfying ∂κ1 ∩ ∂κ2 6= / 0, i.e. in other words that ε is of bounded variation from one element to the other. The Bubble Stabilized Discontinuous Galerkin (BSDG) was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2021

ISSN: ['0036-1429', '1095-7170']

DOI: https://doi.org/10.1137/20m1364114